译者按:本文乃四分之一个世纪前的旧作,但又是当今宇宙学领域中日益为人们所关注的“人择原理”的始作俑者。谨作此译,以飨读者。

无量纲的引力耦合常数:

2.3.1

式中mp是对于确定为质子这样的基本粒子质量。它的数值竟是如此之小,以致世人对其中的意义长久地持有疑问。爱丁顿认为,包括这一常数的所有无量纲物理常数都可以归约为简单的数学表达式。狄拉克则认为,这样一个奇特的数必定与表征宇宙结构的其他类似尺度的数有关。然而,绝大多数物理学家似乎仍然确信像(1)这样的无量纲常数,乃是大自然本身所赋予的,不可能计算出来,也不会以什么方式与其他的数有关。

2.3.2

式中T是哈勃的宇宙年龄。对于演化宇宙,T是随时间改变的,它向狄拉克暗示所有的大数均随时间改变,以(1040)n的数量级随Tn而变化。基于这一思想,狄拉克建立了一种宇宙学,约丹又推导出对应于狄拉克宇宙学的相对论性理论。

由式(1)和(2)以及作为可视极限的宇宙质量,给出了第三个重要的大数,表示为:

2.3.3

按照狄拉克的假说,这三个数分别以-1、1和2次幂变化。

重要的是,必须在这三个数(1)、(2)和(3)中假设某种更深奥的联系来证明狄拉克的假说。另外,还必须假设这三个数所体现的联系独立于时间,有令人信服的证据支持这个假设。如果现在的T值被理解为是从T的可取值域中所取的一种任意选择,那么,现在的“选择”就有一个小小的先验几率,而这三个数所示类型的那种偶然巧合似已难以成立。考虑到这三个数间所具有的大致关系,如果这些证据是支持狄拉克的话,就必须假设T有很宽的可取值域和一个小小的先验几率。

这就表明,根据演化宇宙的假设,似不允许T在非常宽的值域中任取,而有点像是由于适逢人类出现的生物学要求所决定的。

首先要求这个宇宙及其星系、已经成熟到足以有不同于氢的元素存在。如所周知,构成物理学家本身就有碳。

我们知道,星系一开始形成之际,只有氢,后来在内部形成不同于氢的其他元素,直至恒星的末日散布开来。因此,寿命最短的恒星年龄决定了人类得以出现的时间下限。

人类出现的时间上限是由围绕恒星的行星形式,以及要求有一个适宜于人居住的所在决定的。这个时间又由核反应产生能量的恒星最大年龄所决定。在恒星中心温度升到足以发生核反应之前,由于恒星的变小,出现电子简并压中止引力收缩。假定电子简并就发生在核反应温度,可以估算出寿命最长的恒星质量,从而给出恒星质量的下限:

2.3.4

这与式(1)和(2)相一致。运用类似方法,由恒星的稳定性要求来确定Tmin,也得到同样的数量级。这样同我们原先以为的相反,T就不是在可能选择的宽域中的“任意选择”,而是以物理学家存在的前提所限定的。

还有两个问题:引力耦合常数为什么如此之小?式(3)给出的数的平方根为什么恰与(1)的倒数一致?用马赫原理*能够加以回答。根据马赫原理所作的解释,引力耦合常数并不是 ~ 成不变的,而可以由以下方式的宇宙质量分布确定:

2.3.5

联立式(7)和(6)也能得到联立式(1)和(3)所给的表达式。引力耦合常数很小的原因就在于宇宙的巨大物质量,这当然还不是十分令人满意的答案,只有在解释了质量创生的问题后,它才可能使人心满意足。

看来,对狄拉克宇宙学的统计性论证不足为凭,而如今物理学家的存在和马赫原理的有效假设却足以使式(1)、(2)和(3)这三个数间的数量级关系得到满足。

狄拉克的按语:

迪克讨论了三个宇宙学数值:(1)确定了引力常数、(2)确定了哈勃的宇宙年龄,(3)表示宇宙的粒子数。它们的关系是:(1)大致是(2)的倒数,(3)大致是(2)的平方。我设想这些关系应该与大自然中某些根本性的东西相符,亦即演化宇宙(2)随时间变化,因而(1)和(3)也须随时间发生变化。

迪克认为,根据马赫原理,(1)和(3)之间具有根本性的关系,而(2)是独立的。因此(1)和(3)是常数,(2)则随时间改变。于是,他表明,当人所居住的行星存在之时,(2)必须有大致如现在的值。按照该假设,可居住的行星只能存在于特定的时期,而按照我的假说,它们将来仍然会无限地存在下去,生命永无尽头。

并没有什么裁决这些假设的判定性证据。我更偏爱允许无止境生命可能性的那人们可以企望有朝—日通过直接的观察来解决这个问题。人们还必须能够把(1)的测量达到1010的精度,若干年后再重复测量,看看结果究竟变了没有。

[Nature,Vol. 192 pp. 440 ~ 441 1961年11月4日]

————————

*马赫原理,宇宙星系的质量及其分布取决于引力的一种定性假设——译者注